
Abstract We have reported previously that intro-

gression by Zizania latifolia resulted in extensive DNA

methylation changes in the recipient rice genome, as

detected by a set of pre-selected DNA segments. In

this study, using the methylation-sensitive amplified

polymorphism (MSAP) method, we globally assessed

the extent and pattern of cytosine methylation altera-

tions in three typical introgression lines relative to their

rice parent at ~2,700 unbiased genomic loci each rep-

resenting a recognition site cleaved by one or both of

the isoschizomers, HpaII/MspI. Based on differential

digestion by the isoschizomers, it is estimated that

15.9% of CCGG sites are either fully methylated at the

internal Cs and/or hemi-methylated at the external Cs

in the rice parental cultivar Matsumae. In comparison,

a statistically significant increase in the overall level of

both methylation types was detected in all three stud-

ied introgression lines (19.2, 18.6, 19.6%, respectively).

Based on comparisons of MSAP profiles between the

isoschizomers within the rice parent and between

parent and the introgression lines, four major groups of

MSAP banding patterns are recognized, which can be

further divided into various subgroups as a result of

inheritance of, or variation in, parental methylation

patterns. The altered methylation patterns include

hyper- and hypomethylation changes, as well as inter-

conversion of hemi- to full-methylation, or vice versa,

at the relevant CCGG site(s). Most alterations re-

vealed by MSAP in low-copy loci can be validated by

DNA gel blot analysis. The changed methylation pat-

terns are uniform among randomly selected individuals

for a given introgression line within or among selfed

generations. Sequencing on 31 isolated fragments that

showed different changing patterns in the introgression

line(s) allowed their mapping onto variable regions on

one or more of the 12 rice chromosomes. These seg-

ments include protein-coding genes, transposon/retro-

transposons and sequences with no homology. Possible

causes for the introgression-induced methylation

changes and their implications for genome evolution

and crop breeding are discussed.

Introduction

Whereas cytosine DNA methylation widely exists in

diverse eukaryotic organisms—from fungi and plants

to mammals, higher plants possess a markedly higher

Electronic Supplementary Material Supplementary material is
available for this article at http://dx.doi.org/10.1007/s00122-006-
0286-2 and is accessible for authorized users.

Communicated by E. Guiderdoni

Z. Y. Dong and Y. M. Wang have equally contributed to the
work.

Z. Y. Dong Æ Y. M. Wang Æ Z. J. Zhang Æ X. Y. Lin Æ
X. F. Ou Æ B. Liu (&)
Laboratory of Plant Molecular Epigenetics,
Institute of Genetics and Cytology,
Northeast Normal University,
Changchun 130024, China
e-mail: baoliu6677@yahoo.com.cn

Y. Shen
Key Laboratory for Applied Statistics of MOE,
Northeast Normal University, Changchun 130024, China

F. P. Han
Division of Biological Sciences, University of Missouri,
Columbia, MO 65211, USA

Theor Appl Genet (2006) 113:196–205

DOI 10.1007/s00122-006-0286-2

123

ORIGINAL PAPER

Extent and pattern of DNA methylation alteration in rice lines
derived from introgressive hybridization of rice
and Zizania latifolia Griseb

Z. Y. Dong Æ Y. M. Wang Æ Z. J. Zhang Æ
Y. Shen Æ X. Y. Lin Æ X. F. Ou Æ F. P. Han Æ
B. Liu

Received: 16 December 2005 / Accepted: 31 March 2006 / Published online: 5 May 2006
� Springer-Verlag 2006



level of this covalent modification of their DNA, with

20–40% of all cytosine residues in the nuclear DNA

being methylated (Gruenbaum et al. 1981; Messeguer

et al. 1991). Recent years have seen an increasing

interest in the study of various aspects of cytosine

DNA methylation owing to realization of its funda-

mental roles in multiple cellular activities, including

control of gene expression, maintenance of genomic

integrity, formation and perpetuation of heterochro-

matin, and control of genomic imprinting (Bourc’his

and Bestor 2004; Tariq and Paszkowski 2004; Rangw-

ala and Richards 2004). Consequently, disturbance of

intrinsic DNA methylation patterns may have struc-

tural and functional consequences to the organisms

with this epigenetic code (Wolffe and Matzke 1999;

Martienssen and Colot 2001; Tariq and Paszkowski

2004). For example, mutations in any of the three

known DNA methyltransferase (DMTase) genes in

mouse, leading to genome-wide hypomethylation, are

lethal during early embryonic stages (Geiman and

Robertson 2002). In Arabidopsis, drastic global

reduction of cytosine methylation due to loss-of-func-

tion mutation of the Met 1 gene (counterpart of the

mammalian Dnmt1) or DDM1 (decrease in DNA

methylation1) gene, albeit non-lethal, produces pleio-

tropically defective phenotypes and developmental

abnormality (Finnegan et al. 1996; Kakutani et al. 1996;

Ronemus et al. 1996).

Introgressive hybridization, being a frequent phe-

nomenon in natural plant populations, represents a

driving force in genome evolution by either direct

transfer and/or de novo genesis of adaptive traits

(Arnold 2004). Nevertheless, the underlying mecha-

nism for the origin of novel traits (e.g., transgressive

segregation) in the derived introgression lines remains

obscure (Rieseberg et al. 2003). Similarly, although

interspecific crossing and backcrossing (resulting in

introgression) are widely used in plant breeding, novel

traits that are not explainable by gene transfer or

insertional disruption often appear in the derived

progenies. Could it be that some of these phenomena

have an epigenetic basis? For example, it may be

possible that the intrinsic chromatin states and DNA

methylation patterns can be disturbed by the integra-

tion of chromatin segments from a divergent species, or

the introduction of new trans-acting inducers/modifiers

may direct or regulate the establishment of new epi-

genetic states that are different from the original one.

Indeed, it has been demonstrated repeatedly in mam-

mals that integration of foreign DNA may cause the

host genome to undergo extensive and genome-wide

alterations in DNA methylation patterns of both cel-

lular genes and transposon-associated DNA repeats

(Heller et al. 1995; Remus et al. 1999; Muller et al.

2001).

We have reported recently that, similar to the

situation in animals, mentioned above, extensive and

heritable changes in DNA methylation patterns of a

set of selected DNA sequences occurred in rice lines

containing introgressed chromatin segments from

Zizania latifolia Griseb., a wild grass in tribe Ory-

zeae, and hence, related to cultivated rice (Oryza

sativa L.) (Liu et al. 2004). It is not clear, however,

the extent and pattern of methylation modifications in

the introgression lines from a genome-wide perspec-

tive. Here, we have extended the earlier study by

analyzing the cytosine methylation patterns of a large

number of unbiased loci distributed throughout the

rice genome in the same set of introgression lines

using a more global method, the methylation-sensi-

tive amplified polymorphism (MSAP) approach

(Reyna-Lopez et al. 1997; Xiong et al. 1999; Ashik-

awa 2001; Cervera et al. 2002). We report that di-

verse patterns of DNA methylation alterations

occurred at loci mapped to variable regions across

the rice genome in the introgression lines, that dif-

ferent types of sequences including protein-coding

genes and transposons were affected, and that there

was a significant increase in the overall relative

methylation level in all three introgression lines

compared with their original rice parental cultivar.

Materials and methods

Plant material

Three rice introgression lines (RZ1, RZ2, RZ35) de-

rived from introgressive hybridization between rice

(cv. Matsumae) and a local accession of Z. latifolia

Griseb. by a novel sexual hybridization approach (Liu

et al. 1999) were used in the present study. The intro-

gression lines are homogeneous in phenotype and ex-

hibit heritable, novel morphological characteristics in

multiple traits compared with their rice parent, cv.

Matsumae, at the 9th–11th selfed generations (Liu

et al. 1999), and hence represent stabilized introgres-

sants. These lines were characterized by genome-wide

AFLP fingerprinting as possessing < 0.1% genomic

DNA from Z. latifolia (Wang et al. 2005); nonetheless,

presence of Zizania-specific interspersed DNA repeats

was detected, thus verifying their nature as bona fide

introgression lines (Shan et al. 2005). All lines are

maintained by strict selfing under normal growing

conditions.
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MSAP analysis

To explore possible alterations in DNA methylation

pattern at unbiased, yet specific loci in the introgres-

sion lines relative to their rice parent, we used the

MSAP analysis method essentially as reported (Reyna-

Lopez et al. 1997; Xiong et al. 1999; Ashikawa 2001;

Cervera et al. 2002). MSAP is a modified version of the

standard Amplified fragment length polymorphism or

AFLP technique (Vos et al. 1995), by incorporating a

pair of isoschizomers, HpaII/MspI, that possess dif-

ferential sensitivity to cytosine methylation at the

CCGG sites. In total, one pair of pre-selective primers

and 44 pairs of selective primers were used for ampli-

fications (Supplementary Table 1). Silver stained

sequencing gel was used to resolve and visualize the

amplification products. Only clear and reproducible

bands that appeared in two independent PCR ampli-

fications (starting from the digestion-ligation step, i.e.,

the first step of MSAP) were scored.

Recovery and sequencing of MSAP bands

Bands of interest in the silver-stained MSAP gels were

eluted and re-amplified with the appropriate selective

primer combinations. Sizes of the PCR products were

verified by agarose gel electrophoresis, and then cloned

into the AT cloning vector (The Sangong Biotech. Inc.,

Shanghai, China). The cloned DNA segments were

sequenced with vector primers by automatic sequenc-

ing. The Advanced BlastN and BlastX programs at the

NCBI website (http://www.ncbi.nlm.nih.gov/) were

respectively used for mapping and homology analysis

of the cloned DNA sequences that gave quality-reads.

DNA gel blot analysis

Genomic DNA was isolated from expanded leaves

(precaution was taken to use leaves at the same

developmental stage) of individual plants by a modi-

fied CTAB method (Kidwell and Osborn 1992) and

purified by phenol extractions. Genomic DNA was

digested by EcoRI together with either of the pair of

methylation-sensitive isoschizomers, HpaII or MspI

(New England Biolabs Inc.). To ensure complete

digestion, an excess of enzymes (10 units enzyme per

lg DNA) was used and the incubation time was

extended to ~ 48 h. Digested DNA was fractionated by

running through 1% agarose gels and transferred onto

Hybond N+ nylon membranes (Amersham Pharmacia

Biotech) by the alkaline transfer recommended by the

supplier. Cloned DNA segments representing different

methylation patterns in the MSAP profile were se-

lected as hybridization probes. Hybridization signal

was detected by the Gene Images CDP-Star detection

module (Amersham Pharmacia Biotech) after washing

at a stringency of 0.2 · SSC, 0.1% SDS for 2 · 50 min.

The filters were exposed to X-ray film for a few min-

utes to several hours depending on estimated copy

number of the probe sequences.

Results

Increase in the overall relative cytosine methylation

level in the introgression lines versus their rice

parent

HpaII and MspI are a pair of isoschizomers that rec-

ognize the same restriction site (5¢-CCGG) but have

different sensitivity to the methylation states of the

cytosines: HpaII will not cut if either of the cytosines is

fully (double-strand) methylated, whereas, MspI will

not cut if the external cytosine is fully- or hemi- (single-

strand) methylated (McClelland et al. 1994). Thus, for

a given DNA sample, the full methylation of the

internal cytosine, or hemi-methylation of the external

cytosine, at the assayed CCGG sites, can be revealed as

absence in HpaII-digest versus presence in MspI-digest

and absence in MspI-digest versus presence in HpaII-

digest, of the specific band, respectively, in the MSAP

profiles. It should be noted however that because

HpaII and MspI cannot differentiate among several

other states of the CCGG sites, including unmethy-

lated CCGG, fully methylated mCmCGG or himi-

methylated CmCGG, the methylation percentages cal-

culated by MSAP should be lower than the total

absolute values (Ashikawa 2001; Cervera et al. 2002).

In addition, if the scored bands contain internal

methylated CCGG site(s), the percentages will be

further underestimated; in fact, this is the case in our

analysis, as will be detailed later. Notwithstanding

these potential underestimates on the total absolute

values of CCGG methylation, capability of the MSAP

method for comparison of total relative methylation

percentages of two major methylation states at the

CCGG sites, i.e., full-methylation of the internal Cs

and hemi-methylation of the external Cs, is technically

reliable and efficient.

By using 44 pairs of EcoRI + HpaII/MspI primer

combinations, we amplified 836, 925, 990 and 882 clear

and reproducible bands respectively for the rice

parental line Matsumae, and introgression lines RZ1,

RZ2 and RZ35 (Table 1). In Matsumae, of the CCGG
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sites that are not fully methylated at the external Cs,

8.4% are fully methylated at the internal Cs only, and

another 7.5% are hemi-methylated at the external Cs

only. These values are very close to those calculated

for other rice cultivars (~ 16% overall) using the same

method (Xiong et al. 1999; Ashikawa 2001). Compared

with parental cultivar Matsumae, all three introgres-

sion lines (RZ1, RZ2, RZ35) showed alterations in

both types of detectable cytosine methylation levels,

i.e., full methylation of the internal cytosine and

hemi-methylation of the external cytosine, at the

CCGG sites. Specifically, in RZ1, levels of both types

of methylation are increased, with full methylation of

the internal cytosine and hemi-methylation of the

external cytosine being 9.7 and 9.5%, respectively

(Table 1). In RZ2 and RZ35, the increment for

methylation of the internal cytosine is even greater,

reaching 13 and 13.4%, respectively; in contrast,

methylation of the external cytosine in these two lines

is decreased to 5.6 and 6.2%, respectively (Table 1).

Taken together, the overall cytosine methylation level

of the two states (defined above) in all three intro-

gression lines is significantly elevated compared with

parent Matsumae (a = 0.01, t = 10.79, t2, 0.01 = 6.97).

Inheritance and alteration of locus-specific cytosine

methylation patterns from parent to introgression

lines

The MSAP profile allows comparison of the cytosine

methylation patterns between each introgression line

and its rice parent in a locus-specific manner. We found

that extensive changes (both hypermethylation and

demethylation) in MSAP patterns occurred in the

introgression lines (Fig. 1). In addition, some loci

showed inter-conversion of the two detectable meth-

ylation types, i.e., from full merthylation of the internal

cytosine to hemi-methylation of the external cytosine,

or vice versa, at the relevant CCGG sites (Fig. 1). We

also observed that bands appeared or disappeared in

the introgression lines compared with the rice parent,

simultaneously in EcoRI/HpaII and EcoRI/MspI

amplifications; we interpret at least some of this type of

pattern change as due to nucleotide sequence change

at the CCGG site(s).

In Matsumae, the MSAP loci can be divided into

four major groups (Table 2, Fig. 1): group A refers to

loci that are characterized by monomorphic band(s)

present in both EcoRI/HpaII and EcoRI/MspI ampli-

fications; group B refers to loci that are present in

EcoRI/HpaII amplification but absent in the corre-

sponding EcoRI/MspI amplification; group C refers to

Table 1 Number of bands amplified by MSAP in three introgression lines (RZ1, RZ2, RZ35) and their rice parent (Matsuame)

Rice line Total bands None-methylated CCGG sites Methylated CCGG sites

Fully methylated sites
(internal C)

Hemi-methylated sites
(external C)

Total

Matsumae 836 703 (84.1%) 70 (8.4%) 63 (7.5%) 133 (15.9%)
RZ1 925 747 (80.6%) 90 (9.7%) 88 (9.5%) 178 (19.2%)
RZ2 990 806 (81.4%) 129 (13.0%) 55 (5.6%) 184 (18.6%)
RZ35 882 709 (80.4%) 118 (13.4%) 55 (6.2%) 173 (19.6%)

Fig. 1 Examples of changing MSAP patterns detected in the
three introgression lines (RZ1 lane 2, RZ2 lane 3, RZ35 lane 4)
as compared with their rice parent (Matsumae—lane 1) using
primer combinations E + AAG/HM + TTC (a) and E + ACA/
HM + TTC (b). E + H and E + M refer to digestion with
EcoRI + HpaII and EcoRI + MspI, respectively. Typical chang-
ing methylation patterns, as detailed in the text and Table 2, are
marked by arrowheads
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loci that are present in EcoRI/MspI amplification but

absent in corresponding EcoRI/HpaII amplification;

and group D refer to loci that are not present in parent

but appeared de novo in introgression lines.

According to model of inheritance/alteration in the

introgression lines, each of the four groups can be

further divided into several subgroups or altering pat-

terns (e.g., Fig. 1), as is detailed in Table 2 and briefly

summarized as follows: (1) of the 703 group A loci, the

great majority [639 on averaged (90.9%)] showed

stable Mendelian inheritance in the introgression lines,

the rest showed either variable inheritance between

EcoRI/HpaII and EcoRI/MspI amplifications (patterns

A2 and A3), or non-inheritance in both amplifications

(pattern A4); (2) of the 63 group B loci, only 21.7 on

average (34.4%) showed stable inheritance in the

introgression lines, with the rest showing variable

inheritance between EcoRI/HpaII and EcoRI/MspI

amplifications (patterns B2, B3 and B4); (3) of the 70

group C loci, 46.3 on average (66.1%) showed stable

inheritance to the introgression lines, with the rest

showing variable inheritance between EcoRI/HpaII

and EcoRI/MspI amplifications (patterns C2, C3 and

C4); (4) on average, 148.4 group D loci appeared de

novo in the introgression lines in either or both of

EcoRI + HpaII and EcoRI + MspI amplifications.

Of these diverse changing patterns in the intro-

gression lines versus their rice parental cultivar, apart

from the fourth category in each group, namely, A4,

B4 and C4, which can be caused by nucleotide

sequence changes leading to loss or gain of one or

more CCGG sites, all rest should be due to methyla-

tion alteration at the internal or external cytosine of

the assayed CCGG site(s).

Validation of the cytosine methylation changes and

their meiotic transmission in the introgression lines

by DNA gel blot analysis

Because the MSAP technique involves two rounds of

PCR amplifications, it is necessary to rule out possible

PCR artifacts as a cause for the observed differential

methylation patterns in an introgression line versus

parent. Thus, to validate the methylation changes

revealed by MSAP in the introgression lines, we selected

15 isolated MSAP bands (MSAP2, MSAP6, MSAP10,

MSAP11, MSAP13, MSAP16, MSAP17, MSAP18,

MSAP19, MSAP21, MSAP22, MSAP26, MSAP27,

MSAP28, MSAP84) as probes for Southern blot analysis

using EcoRI plus HpaII or MspI double enzyme-diges-

tions, which represented several different MSAP pat-

terns (Fig. 1, Table 2). Southern blot hybridization

revealed that, 7 of these 15 probes gave a smearing

hybridization signal denoting their repetitive nature

(data not shown), and hindered further analysis; eight

probes (MSAP2, MSAP6, MSAP10, MSAP13,

MSAP16, MSAP22, MSAP28, MSAP84) produced dis-

crete bands, and in all but one case (probe MSAP6)

alteration in banding patterns in one or more intro-

gression lines versus their rice parent, which can be

Table 2 Cytosine methylation patterns in the rice introgression lines (RZ1, RZ2, RZ35) and their rice parent (Matusumae)

Pattern Matsumae Introgression line

H M H M Number and frequency of sites

RZ1 RZ2 RZ35 Average

A1 + + + + 646 (91.9%) 613 (87.2%) 658 (93.6%) 639 (90.9%)
A2 + + + ) 19 (2.7%) 14 (2.0%) 12 (1.7%) 15 (2.1%)
A3 + + ) + 11 (1.6%) 29 (4.1%) 16 (2.3%) 18.7 (2.7%)
A4 + + ) ) 27 (3.8%) 47 (6.7%) 17 (2.4%) 30.3 (4.3%)
Total 703 (100%)
B1 + ) + ) 30 (47.6%) 15 (23.8%) 20 (31.7%) 21.7 (34.4%)
B2 + ) + + 27 (42.9%) 34 (54.0%) 10 (15.9%) 23.7 (37.6%)
B3 + ) ) + 2 (3.2%) 7 (11.1%) 8 (12.7%) 5.7 (9.0%)
B4 + ) ) ) 4 (6.3%) 7 (11.1%) 25 (39.7%) 12 (19.0%)
Total 63 (100%)
C1 ) + ) + 51 (72.9%) 40 (57.1%) 48 (68.6%) 46.3 (66.1%)
C2 ) + + + 9 (12.9%) 13 (18.6%) 13 (18.6%) 11.7 (16.7%)
C3 ) + + ) 0 (0%) 4 (5.7%) 3 (4.3%) 2.3 (3.3%)
C4 ) + ) ) 10 (14.2%) 13 (18.6%) 6 (8.5%) 9.7 (13.9%)
Total 70 (100%)
D1 ) ) + + 65 (50%) 146 (66.1%) 28 (29.8%) 79.7 (53.7%)
D2 ) ) + ) 39 (30%) 22 (10.0%) 20 (21.3%) 27 (18.2%)
D3 ) ) ) + 26 (20%) 53 (23.9%) 46 (48.9%) 41.7 (28.1%)
Total 130 (100%) 221 (100%) 94 (100%) 148.4 (100%)

200 Theor Appl Genet (2006) 113:196–205

123



unequivocally ascribed as alteration in cytosine meth-

ylation, was observed (Fig. 2 and data not shown). Probe

MSAP6 produced a complex pattern that can also be

caused by sequence changes at the CCGG sites (data not

shown). It is thus appeared that the majority of MSAP

pattern alterations at low-copy genomic regions in the

introgression lines can be validated by gel blot analysis

as bona fide methylation alterations at the CCGG sites.

To investigate if the altered cytosine methylation

patterns in the introgression lines were mitotically

stable and meiotically heritable, genomic DNA from

leaves of three randomly selected individual plants

taken from each of the three successive selfed gener-

ations (9th–11th) were digested with HpaII or MspI

and hybridized against the seven selected MSAP bands

(see above) that showed clear methylation alterations

compared with the parent. Results showed that com-

plete uniformity in the newly acquired methylation

patterns among the individuals for a given introgres-

sion line was detected both within and between the

selfed generations (Fig. 3 and data not shown), indi-

cating stable mitotic perpetuation and meiotic inheri-

tance of the altered methylation patterns in these lines.

Cytosine methylation changes in the introgression

lines are genome-wide in scope and affecting both

cellular genes and transposons

Based on BlastN analysis at the Gramenae (Ware et al.

2002) website (http://www.gramene.org), the 31 clones

that produced quality sequencing reads are mapped to

one or more of all 12 rice chromosomes, indicating that

Fig. 2 Examples of validation by methylation-sensitive DNA gel
blot analysis on alterations in DNA methylation pattern in the
introgression lines relative to their rice parent. Hybridization of
probes MSAP16 (a), MSAP22 (b) and MSAP28 (c) to
EcoRI + HpaII- or EcoRI + MspI-digested genomic DNA of
the rice parent Matsumae (lane 1), Zizania latifolia (lane 5) and
the three introgression lines RZ1, RZ2 and RZ35 (lanes 2–4).
For all three probes, the banding patterns in EcoRI alone digest
are mornomorphic among the rice lines, indicating lack of
sequence change at the EcoRI restriction sites. Loss of parental
bands (marked by arrows) and gain of novel bands (marked by
solid circles) in EcoRI + HpaII- or EcoRI + MspI-digest but not
in both should unequivocally denote cytosine methylation
alterations at the relevant CCGG sites. A single band (marked
by arrowheads) disappeared in both enzyme combinations of
probe MSAP22 (b) is probably due to sequence change at the
CCGG site(s). The 1 kb DNA ladder (Fermentas Inc., Maryland,
USA) was used as molecular size marker

Fig. 3 Examples of meiotic inheritance of altered methylation
patterns at both the internal and external cytosines in the
introgression lines, as evidenced by homogeneity of the newly
acquired patterns in Southern blot analysis among three random
individual plants within an introgression line. a, b being probe
MSAP10 with MspI digest and probe MSAP84 with HpaII
digest, respectively
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the alterations in DNA methylation pattern in the

introgression lines are likely genome-wide in scope.

Based on BlastX analysis, of the 31 clones, 17

showed significant similarities to known-function

genes, sequences encoding for hypothetical proteins or

sequences related to transposons/retrotransposons,

whereas 14 identified no meaningful match (Table 3

and Supplementary Table 2). This result indicates that

both cellular genes and transposable elements have

been targets for methylation alterations in the intro-

gression lines.

Sequence characterization revealed that 11 out of the

31 MSAP fragments (35%) resulted from HpaII-MspI/

HpaII-MspI restriction (Supplementary Table 2), which

is incongruent with previous studies (Reyna-Lopez et al.

1997; Xiong et al. 1999; Ashikawa 2001; Cervera et al.

2002) wherein usually only HpaII-MspI/EcoRI hetro-

fragments were obtained. We believe that the major

reason for this discrepancy is because all previous stud-

ies used 33 P-labeled EcoRI primers, such that only

fragments with the EcoRI adaptor were visible; in con-

trast, we used silvers staining where all amplified frag-

ments can be visualized (method).

Discussion

Several previous studies have demonstrated that the

MSAP technique is highly efficient and reliable for

large-scale detection of cytosine methylation at

unbiased loci in plant genomes (Xiong et al. 1999;

Ashikawa 2001; Cervera et al. 2002; Portis et al.

2003). The fact that the overall relative cytosine

methylation level at the 5¢-CCGG sites in rice culti-

var Matsumae estimated in this study virtually gave

the same value as the two previous independent

studies (Xiong et al. 1999; Ashikawa 2001) strongly

suggests consistency and reproducibility of the MSAP

technique. This was further bolstered by the result

that most MSAP-detected alterations in the cytosine

methylation patterns at low-copy genomic regions in

the introgression lines could be validated by meth-

ylation-sensitive gel blot analysis using the isolated

DNA segments as probes.

We recently reported that rice lines introgressed by

Z. latifolia exhibited extensive and heritable alteration

in DNA methylation patterns (detected by DNA gel

blot analysis) in a set of pre-selected loci including both

protein-coding genes and transposon-related se-

quences, yet, the extent and pattern of the methylation

alteration in these lines on a genome-wide scale was

not known (Liu et al. 2004). By the MSAP technique,

we have showed in this paper that (1) extensive cyto-

sine methylation alterations including hyper- and hy-

pomethylation as well as inter-conversion of

methylation types (from hemi- to full-methylation or

vice visa) occurred at multiple genomic loci in the

introgression lines; (2) according to their nature of

occurrence in the parent and their inheritance to, or

variation in the introgression lines, the altered patterns

can be divided into distinct groups and subgroups; (3)

most alterations at low-copy genomic regions in the

introgression lines can be confirmed by DNA gel-blot

analysis, and the newly-acquired patterns are stably

inherited; (4) the estimated relative overall cytosine

methylation levels at the 5¢-CCGG sites in all three

studied introgression lines are significantly higher than

that of the parental cultivar; and (5) based on sequence

homology, the loci underwent methylation alterations

in the introgression lines are diverse, including protein-

coding genes, transposon/retrotransposon-related se-

quences and sequences with unknown functions.

A salient observation in this study is the unexpected

high instability of group B loci (hemi-methylation of

external Cs), and the moderate stability of group C loci

(full methylation of the internal Cs), at the assayed

CCGG sites (Table 2), as a result of Zizania intro-

gression. The underlying mechanism is unknown,

nonetheless, it underscores the emerging view that in

plants different categories of methylation patterns are

specified and maintained by divergent enzymatic

machineries (Chan et al. 2005).

Possible causes for these dramatic methylation

alterations in the rice lines derived from introgressive

hybridization remains enigmatic. Given the scope

(genome-wide) of the methylation alterations versus

the minute amount ( < 0.1%) of introgressed DNA,

as well as occurrence of alterations in sequences that

do not have homologues in the donor species Zizania

(e.g., Fig. 2; Liu et al. 2004), it is unlikely that the

alterations are caused by homology-dependent

mechanisms (Bender 1998; Matzke et al. 2002), as

has been proposed responsible for the remodeling of

Table 3 Classification of cloned DNA segments showing
alteration in DNA methylation pattern in the introgression
lines based on the MSAP profile

Category Number of
DNA
segment

Percentage

Known-function gene 11 35.5
Putative protein-coding gene 4 12.9
Transposon and retrotransposon 2 6.5
No similarity 14 45.1
Total 31 100

202 Theor Appl Genet (2006) 113:196–205

123



DNA methylation patterns in newly formed plant

wide-hybrids and allopolyploids (Matzke et al. 1999;

Wendel 2000; Shaked et al. 2001; Madlung et al.

2002; Pikaard 2001; Comai et al. 2003; Levy and

Feldman 2004; Comai 2005). Instead, it is more

plausible that the cytosine methylation alterations in

the introgression lines are caused by one or more of

the following not-necessarily-mutually exclusive

mechanisms: (1) A general disturbance of the

intrinsic epigenetic chromatin states constituted by,

or interrelated to, cytosine DNA methylation pat-

terns as a result of alien chromatin insertion, as was

proposed to be responsible for the occurrence of

similar phenomena in animals with integrated foreign

DNA (Heller et al. 1995; Remus et al. 1999; Muller

et al. 2001). (2) The introduction of an exogenous

trans-acting ‘‘methylation-modifying’’ factor(s) from

the donor species Zizania or activation of otherwise

cryptic endogenous factor(s) in rice, as a result of

alien introgression, that may have caused alteration

on the original parental cytosine methylation patterns

following cell divisions. This later scenario is consis-

tent with findings by a recent study on possible

controlling mechanisms of naturally occurring eco-

type-specific cytosine methylation patterns in Ara-

bidopsis (Riddle and Richards 2002). In the study,

two QTLs corresponding to trans-acting methylation

modifiers were identified, which are believed to

contribute to both establishment and maintenance of

ecotype-specific cytosine methylation patterns (Rid-

dle and Richards 2002). Moreover, such genotype-

specific methylation pattern modifiers were also

shown to present in mouse (Schumacher et al. 2000).

(3) The altered cytosine methylation patterns are

directed by genomic rearrangements that lead to the

formation of ‘‘aberrant structures’’ in the introgres-

sion lines. It has been demonstrated in Arabidopsis

that some naturally occurring aberrant genomic

structures like direct or inverted DNA repeats may

induce de novo DNA methylation of the underlying

sequence and to sequences homologous to it (Luff

et al. 1999; Melquist et al. 1999). This, coupled with

the often faithful inheritance of newly acquired

methylation patterns across organismal generations in

plants (Scheid et al. 2003; Riddle and Richards 2002;

Chan et al. 2005), may lead to methylation diversi-

fication from the original patterns. In this regard, it is

notable that the rice introgression lines used in this

study indeed contained a large amount of structural

anomalies that are not accounted for by direct

transfer from the donor species (Wang et al. 2005).

Despite our current ignorance of the mechanisms,

the extensive and genome-wide occurrence of meth-

ylation alterations as a result of introgressive

hybridization may have conspicuous structural and

functional bearing to the introgression lines. For

example, arrays of heritable transgressive phenotypic

traits, including the overall plant form, disease-resis-

tance, flowering time, yield-component traits etc.,

appeared de novo in the introgression lines (Liu

et al. 1999; unpublished data). Given the wide-

occurrence of DNA methylation alterations detected

in the MSAP profiles, it might be possible that some

of the novel traits have an epigenetic basis, i.e., they

are caused by DNA methylation-mediated changes in

gene expression. In addition, two types of transpos-

able elements, the copia-like LTR retrotransposon

Tos17 (Hirochika et al. 1996) and a MITE transpo-

son mPing (Jiang et al. 2003; Kikuchi et al. 2003;

Nakazaki et al. 2003), are found as transiently

mobilized in some of the introgression lines whereas

both elements remain static in the parent cultivar

(Liu and Wendel 2000; Shan et al. 2005). Further-

more, at least for Tos17, the element activity is

correlated with its cytosine methylation status, an

observation consistent with the genome defense role

by cytosine DNA methylation on repressing activity

of transposable elements in eukaryotes (Wessler

1996; Wang et al. 1996; Yoder et al. 1997; Grand-

bastien 1992; Grandbastien 1998; Wolffe and Matzke

1999; Martienssen and Colot 2001; Ros and Kunze

2001; Kato et al. 2004; Zilberman and Henikoff

2004). Therefore, element activation in the intro-

gression lines is likely the consequence of cytosine

methylation alterations detected in this study. Thus,

an apparent implication of findings of this paper is

on our appreciation of plant breeding materials de-

rived from introgressive hybridization. Based on this

study, it appears possible that at least in some cases

introgression of genomic DNA from divergent spe-

cies may impose a broader impact on the recipient

cultivar than hitherto recognized, and some of the

transgressive traits that are traditionally believed to

result from genic interactions (epistasis) may actually

have an epigenetic underpinning like altered DNA

methylation patterns and its downstream conse-

quences. Similarly, another implication with respect

to the present findings is related to genome evolution

under natural conditions mediated by introgression.

Given prevalence of introgressive hybridization

events between differentiated plant populations

(Rieseberg 1995; Arnold 1997), it is likely that sto-

chastic epigenetic alleles may have been generated

by introgression, which are subjected to natural

evaluation and selection, and hence, contribute to

adaptive evolution (Finnegan 2001; Kakutani 2002;
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Kalisz and Purugganan 2004; Rapp and Wendel

2005). Thus, an added role by introgression on gen-

ome evolution is likely due to its potentiality to

generate epi-alleles in the form of altered DNA

methylation patterns.
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